Hydrogen Sulfide Contributes to Retinal Neovascularization in Ischemia-Induced Retinopathy
نویسندگان
چکیده
PURPOSE Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule with significant pathophysiological importance, but its role in retinal neovascular diseases is unknown. Hydrogen sulfide is generated from L-cysteine by cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), and/or 3-mercaptopyruvate sulfurtransferase (3-MST). The aim of this study was to investigate the role of H2S in retinal neovascularization (NV) in ischemia-induced retinopathy. METHODS Studies were performed in a murine model of oxygen-induced retinopathy (OIR). Hydrogen sulfide was detected with a fluorescent assay. Western blots and immunohistochemistry were used to assess the changes of H2S-producing enzymes. Gene deletion and pharmacologic inhibition were used to investigate the role of H2S in retinal NV. RESULTS Hydrogen sulfide production was markedly increased in retinas from OIR mice compared with those from room air (RA) controls. Cystathionine-β-synthase and CSE were significantly increased in OIR retinas, whereas 3-MST was not changed. Cystathionine-β-synthase was expressed throughout the neuronal retina and upregulated in neurons and glia during OIR. Cystathionine-γ-lyase was also localized to multiple retinal layers. Its immunoreactivity was prominently increased in neovascular tufts in OIR. Pharmacologic inhibition of CBS/CSE or genetic deletion of CSE significantly reduced retinal NV in OIR. CONCLUSIONS Our data indicate that the H2S-generating enzymes/H2S contributes to retinal NV in ischemia-induced retinopathy and suggest that blocking this pathway may provide novel therapeutic approaches for the treatment of proliferative retinopathy.
منابع مشابه
Therapeutic Potential of a Monoclonal Antibody Blocking the Wnt Pathway in Diabetic Retinopathy
Dysregulation of Wnt/β-catenin signaling contributes to the development of diabetic retinopathy by inducing retinal inflammation, vascular leakage, and neovascularization. Here, we evaluated the inhibitory effect of a monoclonal antibody (Mab) specific for the E1E2 domain of Wnt coreceptor low-density lipoprotein receptor-related protein 6, Mab2F1, on canonical Wnt signaling and its therapeutic...
متن کاملLeptin stimulates ischemia-induced retinal neovascularization: possible role of vascular endothelial growth factor expressed in retinal endothelial cells.
Diabetic retinopathy is the leading cause of new blindness in adults in developed countries. Leptin, an adipocyte-derived hormone, stimulates endothelial proliferation and angiogenesis. This study was designed to elucidate the pathophysiologic role of leptin in the progression of retinal neovascularization. Using the retinopathy of prematurity model, a mouse model of ischemia-induced retinal ne...
متن کاملRole of Hydrogen Sulfide in Retinal Diseases
As the third gasotransmitter, hydrogen sulfide (H2S) plays a crucial role in the physiology and pathophysiology of many systems in the body, such as the nervous, cardiovascular, respiratory, and gastrointestinal systems. The mechanisms for its effects, including inhibiting ischemic injury, reducing oxidative stress damage, regulating apoptosis, and reducing the inflammation reaction in differen...
متن کاملNADPH Oxidase 4-Derived H2O2 Promotes Aberrant Retinal Neovascularization via Activation of VEGF Receptor 2 Pathway in Oxygen-Induced Retinopathy
NADPH oxidase 4 (Nox4) is a major isoform of NADPH oxidase in retinal endothelial cells. Our previous study suggests that upregulation of Nox4 in retinal endothelial cells contributes to retinal vascular leakage in diabetes. In the current study, we investigated the role and mechanism of Nox4 in regulation of retinal neovascularization (NV), a hallmark of proliferative diabetic retinopathy (PDR...
متن کاملHuman Apolipoprotein(a) Kringle V Inhibits Ischemia-Induced Retinal Neovascularization via Suppression of Fibronectin-Mediated Angiogenesis
Retinal neovascularization is observed in progression of diabetic retinopathy. New vessels grow into the vitreous cavity in proliferative diabetic retinopathy, resulting in traction retinal detachment and vitreous hemorrhage. To overcome the catastrophic visual loss due to these complications, efforts have been focused on the treatment of retinal neovascularization. In this study, we demonstrat...
متن کامل